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Overview

2& Fermilab

« US Muon Accelerator Program pursued MW class proton beam and
target production scheme for muons

* This requires minimal beam cooling for Neutrino Factory (order 50)
and significant cooling for Muon Collider (order 10°)

* lonization cooling effective (see MICE results: Nature 578 (2020))
but requires RF cavities to operate in strong magnetic fields

Neutrino Factory (NuMAX)

« The US MAP
conducted extensive
R&D on this topic; two
solutions to this
challenge will be
reviewed here
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https://www.nature.com/articles/s41586-020-1958-9
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RF Cavities in Muon Cooling Channels

« Early work focused on proof-of-principle: How to operate RF
cavities in strong magnetic fields

— Two solutions (at least) exist!
« Later work involved cooling channel design & beam dynamics
— Simulations close to or achieve emittance specifications

— Experimentally achieved gradient exceeds simulated; re-
optimization needed!
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RF breakdown limits accelerating gradient

4

lonization cooling requires high-power RF structures to
operate within multi-tesla B-fields.

Initial R&D addressed breakdown in magnetic field

We reproducibly observe a significant degradation in the
max. achievable E__. for these structures.
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D. Bowring et al., Proc. IPAC 2015
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https://www.bnl.gov/isd/documents/88980.pdf
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Accelerating gradient limits cooling channel
performance
* Low gradient depresses muon yield through channels

— Longer channel
— Worse cooling performance

« This is an undesirable constraint on channel designs

§ 21F
g 180
‘; 7E One example: CT Rogers et al.,
S 16 PRAB 16, 040104 (2013)
§ Lk simulated linear degradation in
s . performance w.r.t. peak
g 3 accelerating field.
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https://journals.aps.org/prab/abstract/10.1103/PhysRevSTAB.16.040104
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How can we explain the effect of the B-field?

 Field emission sources electrons in
cavity volume

« e~ trajectory phase dependence
varies with B-field.

« For B >0, “beamlets” can cause
pulsed heating, cyclic fatigue of

15
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https://www.sciencedirect.com/science/article/pii/S0168900210008132
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Loading cavities with high-pressure gas

circumvents the problem.
Gas-filled RF Test Cell  Toroid current transformer
REpovercowpler gy, o Gas prevents electrons from
T oomer -4 ,M4__~,,'f?31?%“§£§fh"3?2’!_, causing breakdown and
proton beam E } | m| . .
e serves as cooling medium
0 fﬁ—*—mm N | « Doping with electronegative
o ML gas reduces loading from
| e beam-induced plasma.
o Loading H; + DA
e » B <3 T shows no effect on

cavity gradient.
 PRL 111, 184802 (2013)
 PRAB 19, 062004 (2016)
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https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.111.184802
https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.19.062004
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“HPRF” approach has been used in several
channel design/simulation efforts.
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« Helical Cooling Channel (above) K. Yonehara, arxiv:1806.00129

— Predicted cavity loading due to plasma manageable at Muon
Collider bunch intensities

 Rectilinear FOFO: D. Stratakis, arxiv:1709.02331
 Helical FOFO “snake”: Y. Alexahin, MAP-doc-4377

8 4/17/21 B. Freemire | Progress on RF Cavities for Use in Muon Cooling Channels


https://arxiv.org/abs/1806.00129
https://arxiv.org/abs/1709.02331
https://indico.fnal.gov/event/8326/contributions/106718/attachments/69748/83641/GH2FilledHFOFO.pdf

2& Fermilab
Vacuum cavities with non-traditional wall materials
studied
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Electron beamlet current density varies with B-
field. Heat deposition rises above plastic
deformation threshold at different points
depending on material.

External magnetic field (T)

Predicted maximum achievable
gradient vs B for Cu, Be, and Al.

* Model including material
properties directed
experimental thrust

*  “Modular Cavity” with
removable walls tested

* Beryllium performance
directly, experimentally
compared with Cu.
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Beryllium cavity walls also allow for safe operation

10

Material B-field (T) SOG (MV/m) BDP (x107°)

Cu 0 24.4+0.7 1.8+0.4
3 12904 0.8£0.2
0 41.1 £ 2.1 1.1+0.3

Be 3 > 49.8 £ 2.5 0.2 £0.07
Be/Cu 0 43.9 £ 0.5 1.18 £ 1.18

10.1 = 0.1 0.48 =0.14

SOG = “safe operating gradient”, at which breakdown
probability (BDP) < 10-°

~50 MV/m achieved in 3 T field with beryllium walls

For beryllium case, limiting factor was RF infrastructure not
cavity breakdown.

D. Bowring, PRAB 23, 072001 (2020)
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https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.23.072001

Summary

2& Fermilab

 Significant cooling required for proton driven Muon Collider

 Two RF cavity designs experimentally demonstrated
proof-of-principle concept for muon cooling channels

— High pressure gas filled & vacuum with beryllium walls

Simulated cooling channels meet or are close to
emittance specifications for Higgs Factory or multi-TeV

collider
— see D. Stratakis talk
— Experimentally achieved

gradient exceeds simulated
one; re-optimization needed

* With completion of MICE

11

(Nature 578 (2020)), prototype
RF cavity design and cooling
channel next step
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https://www.nature.com/articles/s41586-020-1958-9

